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 When attributes are hierarchically structured, modifying the Q-matrix or prior distribution in the 

estimation process yields more accurate and precise item and person parameter estimates. 

Modification of the prior distribution and the Q-matrix depend on the assumed attribute hierarchy, 

as such, identifying the correct hierarchical structure among a set of measured is of the essence. To 

address the subjectivity in the conventional methods for attribute structure identification (i.e., expert 

opinions via content analysis and verbal data analyses such as interviews and think-aloud protocols); 

this study proposes a likelihood-ratio-test based exhaustive empirical search method for identifying 

hierarchical structures. It further suggests employment of likelihood-ratio-test based model selection 

approach for choosing the most accurate hierarchical structure among proposed candidates. Results 

of this study show that the likelihood-ratio-test based exhaustive search produces a reachability 

matrix that specifies all the true prerequisite relationships among the attributes. Thus, the method is 

promising and may be used for exploratory purposes for identification of hierarchical attribute 

structure.  

© 2019 IOJES. All rights reserved 
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Introduction 

In many educational and psychological tests, examinees are required to use their knowledge, skills, 

strategies, and cognitive competencies for successful completion of the assessment tasks. Such categorical 

latent variables representing the knowledge states of examinees are referred to as attributes. These attributes 

may have a hierarchical structure (Templin & Bradshaw, 2014). Cognitive and educational research suggest 

that building conceptual understanding requires incorporating novel knowledge to preliminary or more basic 

knowledge (Linn, Eylon, & Davis, 2004; Smith, Wiser, Anderson, & Krajcik, 2006; Vosniadou & Brewer, 1992). 

Therefore, acquisition of domain related attributes may proceed sequentially. Hence, disciplinary and 
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interdisciplinary ideas need to form a meaningful structure in the curriculum that allows teaching steps build 

upon one another (Schmidt, Wang, & McKnight, 2005). 

Cognitive model of task performance based assessments are, in general, referred to as cognitively 

diagnostic assessment (CDA) (de la Torre & Minchen, 2014). Such assessments aim to identify the attribute 

mastery profiles of examinees. CDAs serve as formative assessment so that the feedback obtained from the 

assessment results might be used to modify teaching and learning activities (DiBello & Stout, 2007). The role 

of cognitive theory must be well articulated in test design; only then, a CDA will be useful. Statistical models 

extracting diagnostic information from CDA have also been developed. These statistical models are referred 

to as cognitive diagnosis models (CDMs) or diagnostic classification models (DCMs) (de la Torre & Minchen, 

2014). To derive a CDM, (1) attribute interaction in response construction and (2) the attributes required for 

each item need to be known (Chiu, Douglas, & Li, 2009).  To define the relationships between items and 

attributes, a 𝐽𝑥𝐾 item-by-attribute specifications matrix is used. This matrix is referred to as Q-matrix 

(Tatsuoka, 1983). The Q-matrix is usually a binary matrix of 𝐽 rows and 𝐾 columns where 𝑗=1,…,𝐽 indicates 

the items and 𝑘=1,…,𝐾 represents attributes measured by the test. In a Q-matrix, an element 𝑞𝑗𝑘 is coded 1 

when item 𝑗 requires attribute 𝑘; otherwise, it is coded 0. When attributes follow a hierarchical structure, the 

Q-matrix and the prior distribution employed in CDM estimation can be modified to obtain more accurate 

and precise item and person parameters (Akbay & de la Torre, 2015).  

Modifications in the prior distribution and in the Q-matrix are applied based on the assumed 

hierarchical structure. Therefore, determining the correct hierarchical structure is of the essence. Because 

specifying an incorrect sequential relationship between any two attributes may substantially degrade 

estimation accuracy. As such, the importance of identifying the true hierarchical structure cannot be 

overemphasized. Current practices for hierarchical structure detection include expert opinions via content 

analysis and verbal data analyses such as interviews and think-aloud protocols (Akbay, Terzi, Kaplan, & 

Karaaslan, 2017; Cui & Leighton, 2009; Gierl, Wang, & Zhou, 2008). These procedures may result in 

disagreements over the prerequisite relationships, which may consequently yield more than one hierarchical 

structure. Furthermore, emerging hierarchical structures from verbal analysis and expert opinion may not be the 

same (Gierl et al., 2008). In the literature, there is no model based statistical tests addressing the subjectivity in 

the conventional methods for detecting hierarchical attribute structure. To address this subjectivity, this study 

proposes a model-fit based empirical exhaustive search method that can be used for hierarchical relationship 

detection among a set of attributes. It should be noted here that the proposed method is intended to 

complement rather than replace the current procedures. 

The rest of this manuscript is organized as follows: Background information for the two specific models 

employed in this research is provided. Then, the empirical search algorithm is presented and simulation 

studies conducted to test the usefulness of the algorithm. Presentation of simulation results is followed by a 

numerical example. There will be some concluding remarks in the last section. 

Background: The DINA and DINO Models 

The deterministic input, noisy ``and'' gate (DINA; de la Torre, 2009b, Junker and Sijtsma, 2001) model has 

two item parameters (i.e., guessing and slip). This property makes the DINA model one of the most 

parsimonious and interpretable CDMs (de la Torre, 2009b). The DINA is known to be a conjunctive model (de 

la Torre, 2011; de la Torre & Douglas, 2004) as it assumes that missing one of the required attributes result in 

the baseline probability that is equal to the probability of answering an item when none of the required 

attributes is mastered (de la Torre, 2009b; Rupp & Templin, 2008).  For a given examinee latent group, 𝜶𝑙, and 

the jth q-vector; an ideal response (𝜂𝑙𝑗=1 or 0) for the latent group is produced by the conjunctive condensation 

function (Maris, 1995, 1999), 
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𝜂𝑙𝑗=∏ 𝛼
𝑙𝑘

𝑞𝑗𝑘

𝐾

𝑘=1

. 

Hence, examinees are divided into two distinct groups by the DINA model. The first group is referred 

to as mastery group, which involves examinees who mastered all required attributes for the item. The second 

group, which is called non-mastery group, consists of examinees lacking at least one of the required attributes. 

Possibility of slipping on an item for examinees in mastery group and guessing on the item for examinees 

in non-mastery group are allowed by the probabilistic component of the model’s item response function (IRF). 

The slipping and guessing probabilities on item 𝑗 are denoted as 𝑠𝑗=𝑃(𝑋𝑖𝑗=0|𝜂𝑖𝑗=1) and 𝑔𝑗=𝑃(𝑋𝑖𝑗=

1|𝜂𝑖𝑗=0), respectively, where 𝑋𝑖𝑗 is the observed response of examinee i to item j. Given 𝑠𝑗 and 𝑔𝑗, the IRF of 

the DINA model is written as 

𝑃(𝑋𝑗=1|𝜶𝑙)=𝑃(𝑋𝑗=1|𝜂𝑗𝑙)=𝑔𝑗
1−𝜂𝑗𝑙

(1−𝑠
𝑗

𝜂𝑗𝑙
), 

where 𝜶𝑙 is attribute pattern l among 2K possible attributes patterns; 𝜂𝑗𝑙 is the expected response of an examinee 

to item j who possesses attribute pattern l; and 𝑔𝑗 and 𝑠𝑗 are guessing and slip parameters,  respectively (de la 

Torre, 2009a). 

The deterministic input, noisy ``or'' gate (DINO; Templin and Henson, 2006) model is the disjunctive 

counterpart of the DINA model. This model assumes that mastering at least one of the required attributes and 

mastering all of the required attributes results in the same success probability for correctly answering an item 

(Rupp & Templin, 2008). Due to the disjunctive nature of the model, ideal response of an examinee (i.e., 𝜔𝑗𝑙=

1 or 0) in latent group 𝜶𝑙 is given by the function  

𝜔𝑙𝑗=1−∏ (1−𝛼𝑙𝑘)
𝑞𝑗𝑘

𝐾

𝑘=1

. 

Although the DINO also partition examinees into mastery and non-mastery group, the non-mastery 

group consisted of examinees missing all the required attributes while the rest of the examinees are classified 

into the mastery group. 

The model parameters are defined as 𝑠𝑗=𝑃(𝑋𝑖𝑗=0|𝜔𝑖𝑗=1) and 𝑔𝑗=𝑃(𝑋𝑖𝑗=1|𝜔𝑖𝑗=0). Therefore, 

the success probabilities of the mastery and non-mastery groups on item j become 1-𝑠𝑗 and 𝑔𝑗, respectively. 

The IRF of the DINO model can be written as 

𝑃(𝑋𝑗=1|𝜶𝑙)=𝑃(𝑋𝑗=1|𝜔𝑗𝑙)=𝑔𝑗
1−𝜔𝑗𝑙

(1−𝑠
𝑗

𝜔𝑗𝑙
), 

where 𝜔𝑗𝑙 is the expected response  of an examinee with attribute pattern l to item j; and  𝑔𝑗 and 𝑠𝑗 are guessing 

and slip parameters for item j, respectively (Templin & Rupp, 2006). 

An Empirical Exhaustive Search for Identifying Hierarchical Attribute Structure 

In cases where attribute k is prerequisite to attribute k’, some of the 2K attribute patterns become 

impermissible. For example, imagine three attributes where A1 is prerequisite for A2 while A3 is independent 

from A1 and A2. Then, theoretically, some of the latent classes (i.e., 010 and 011) do not exist. In this case, one 

can employ a structured prior distribution in the model estimation that leaves out the impermissible latent 

classes. Alternatively, an unstructured prior distribution may also be employed in the estimation that allows 

all 2K latent classes in the estimation. Notice that in the first approach, some of the latent class probability 

parameters are fixed to zero such that there are less parameters to be estimated. Thus, by treating the latter as 

the null model and the former as the alternative model, a likelihood ratio test (LRT) may be conducted with an 

expectation of retaining the null hypothesis when attribute k is a prerequisite attribute for attribute k’. 

Moreover, Akaike information criterion (AIC) and Bayesian information criterion (BIC) may also be used for 

model comparison purposes. 
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Rationale and Search Algorithm 

When attribute k is prerequisite to attribute k’, 3(2𝑘−2) latent classes are permissible while 2𝑘−2 are 

impermissible. For example, when six attributes are measured and one attribute (A1) is prerequisite for 

another attribute (A2); only the subset of attribute patterns conforming to this hierarchical relationship (i.e., 

00****, 10****, and 11****) becomes permissible. The attribute patterns against this prerequisite relationship 

(i.e., 01****) will not be allowed. Here * stands for either 0 or 1 producing 16 different classes.  

When items in a test are sufficiently discriminating, a model estimating only the permissible latent class 

probabilities is expected to yield a model-fit statistic that is not statistically different from the model estimating 

all latent class probabilities. Thus, we obtain a null model using a structured prior distribution, whereas the 

alternative model is obtained by using an unstructured prior distribution. For instance, DINA or DINO model 

estimates 2J+2K-1 parameters in the alternative model; whereas either one estimates 2J+L-1 parameters where 

L stands for the number of permissible latent classes. 

Because the null model is nested within the alternative model, a likelihood ratio test can be conducted 

with an expectation of retaining the null hypothesis (i.e., the null model fits the data equally well) when 

attribute k' in fact requires attribute k. Therefore, an empirical exhaustive search based on the LRT can be 

implemented to detect hierarchical relationships among the measured attributes. To accomplish that, 𝑃𝑘 2=

𝐾(𝐾−1) reduced models each of which specifying a distinct hierarchical relationship between attributes k 

and k’ need to be set. In other words, all possible pairwise prerequisite relationships between measured 

attributes must be specified to form reduced models. Then, LRT is conducted between each of the reduced 

models and the full model. The hierarchical structure identification procedure may be completed in the 

following steps; 

¶ Step 1: Estimate the model parameters for the alternative model, which incorporates an unstructured prior 

distribution.  

¶ Step 2: Estimate the model parameters for the null models that incorporate structured prior distributions 

to fix the impermissible latent class parameters to zero when k is prerequisite to k’.  

¶ Step 3: Repeat Step 2 for all possible 𝑃𝑘 2 pairwise relationships. 

¶ Step 4: Compare the fit of the alternative model against the fit of each of 𝑃𝑘 2 null models. 

¶ Step 5: Report the model comparison results in binary outcomes where 0 indicates rejected null 

hypotheses and 1 stand for retained null hypotheses, respectively. 

¶ Step 6: Fill in the off-diagonals of a 𝐾𝑥𝐾 identity matrix with these binary outcomes. Then, this matrix 

becomes a reachability matrix (R-matrix: Leighton, Gierl, & Hunka, 2004) representing all direct and 

indirect prerequisite relationships among the attributes. 

Table 1. Demonstration of the implementation of search algorithm 

 Attributes     

Hypotheses 000 100 010 001 110 101 011 111 -2LL Deviance p-val. Rej. 

A1ĄA2 P P  P P P  P 28699.59 0.36 0.547 O 

A1ĄA3 P P P  P P  P 28699.23 0.01 0.966 O 

A2ĄA1 P  P P P  P P 29306.97 607.74 0.000 P 

A2ĄA3 P P P  P  P P 28700.21 0.98 0.322 O 

A3ĄA1 P  P P  P P P 29985.20 1285.96 0.000 P 

A3ĄA2 P P  P  P P P 29493.34 794.11 0.000 P 

Full model P P P P P P P P 28699.23    

Note. A1ĄA2 = A1 is prerequisite to A2; p-val. = p-value obtained from the chi-square test with two degrees of freedom; 

and Rej.= rejection decision. 
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Implementation of the Exhaustive Search Algorithm 

For implementation purposes of the algorithm, consider a linear hierarchical structure among three 

attributes (i.e., A1ĄA2, A1ĄA3, and A2ĄA3). First attribute (i.e., A1) is prerequisite for the second and the 

third attributes, and the second attribute is also prerequisite for the third attribute. The Q-matrix used for this 

demonstration consisted of 20 items measuring single attributes and combination of the attributes. The DINA 

model parameters (i.e., guessing and slip parameters) were drawn from a uniform distribution U(0.05, 0.30). 

Response data were generated for 1000 examinees. Then, 3(23−2)=6 reduced models specified and estimated. 

Each of these reduced models specifies a prerequisite relationship among a pair of attributes (e.g., A1ĄA2). 

The Full model allowing all latent classes is also estimated.  

Table 2. Incorporation of the hypothesis testing results into R-matrix 

 Identity matrix   R-matrix 

 A1 A2 A3   A1 A2 A3 

A1 1 0 0  A1 1 1 1 

A2 0 1 0  A2 0 1 1 

A3 0 0 1  A3 0 0 1 

The model comparison results are given in Table 1. The results indicated that the reduced models 

conforming the relationships A1ĄA2, A1ĄA3, and A2ĄA3 fitted to the data as good as the full model such 

that specified null these hypotheses for model comparison were retained. The hypotheses for the remaining 

model comparisons were rejected. Then, off-diagonals of a 𝐾𝑥𝐾 identity matrix, which is created in the same 

order with the hypotheses, were filled with the binary model selection outcomes. The identity matrix then 

becomes an R-matrix defining hierarchical attribute structure. This procedure is shown in Table 2. The given 

R-matrix in the table indicates that A1 is prerequisite for both A2 and A3; and A2 is prerequisite for A3. These 

prerequisite relationships all together define a linear structure among these attributes. 

Hierarchical Structure Selection 

Domain experts can identify the attributes and hierarchical structure among them. To do so, experts 

either rely on the literature and existing theories about cognitive process of human performance (Embretson, 

1998; Leighton et al., 2004); or they analyze the examinee response data that are directly collected via interview 

and think-aloud procedures (Chi, 1997; Leighton et al., 2004). Both approaches may be used iteratively where 

the former approach is used to identify the attributes and the latter is used to validate them (Akbay, Terzi, 

Kaplan, & Karaaslan, 2017; Tjoe & de la Torre, 2014). However, employment of both approaches together may 

be time consuming and costly.  

Two approaches given above may result in different hierarchical structures among measured attributes 

(see Gierl et al., 2008). Moreover, in either approach, experts may not have a consensus such that more than 

one hierarchical structure may be proposed. In such cases the optimum structure must be selected to provide 

the most accurate information regarding the examinees' attribute-mastery level. The viability of likelihood-

ratio approach for hierarchical structure selection, when multiple structures are proposed, is also examined in 

this study. In this manuscript, the null and alternative models defined based on the hierarchical structures 

𝑆0 and 𝑆𝐴, respectively. 𝑆0 subsumes 𝑆𝐴 such that all direct and indirect prerequisite relationships specified in 

𝑆𝐴 are also specified in 𝑆0. This relationship further implies that all permissible latent classes defined by 𝑆0 are 

also in the set of permissible latent classes defined by 𝑆𝐴 (i.e., 𝐿0⊂𝐿𝐴). Then, a model allowing 𝐿0 in the 

estimation becomes the null model and the model allowing 𝐿𝐴 may be regarded as the alternative model to 

conduct LRT. 
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Simulation Studies 

Design 

The viability of the exhaustive search for attribute structure identification and LRT based hierarchical 

structure selection were assessed with two simulation studies. In the first simulation study, the three general 

attribute hierarchy types, namely linear, convergent, and divergent hierarchies, consisting six attributes were 

considered. These structures have been defined by Leighton et al. (2004) and they are displayed in Figure 1. 

Permissible latent classes allowed by each of these hierarchies are given in the appendix. An unstructured 

attributes condition was also considered, in which all possible latent classes were allowed. The DINA and 

DINO models were the two CDMs employed in the simulations. Two different sample sizes (i.e., 𝑁=500 and 

𝑁=1000), two levels of item quality (i.e., higher and lower), four significance levels (i.e., α-levels), and three 

model selection criteria (i.e., LRT, AIC and BIC) were considered.  

 

Figure 1. The linear, convergent, and divergent hierarchical structures defined in Leighton et al., 2004. 

In the second simulation study, three hypothetical hierarchical structures (i.e., 𝑆1, 𝑆2, and 𝑆3) were 

employed. These structures are presented in Figure 2 and their corresponding permissible latent classes (i.e., 

𝐿1, 𝐿2, and 𝐿3) are given in Appendix. As can be seen from the appendix, 𝐿1 is a subset of 𝐿2, and 𝐿3); and 𝐿2 is 

a subset of 𝐿3. This simulation study aimed to assess the viability of the LRT approach for hierarchical structure 

selection under various conditions. Factors considered in the simulation include the item quality, generating 

CDM, sample size, and model selection criterion. The Q-matrix that was used in both simulation studies is 

given in Table 3. 

 

Figure 2. Three hypothetical attribute structures for six attributes 
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Table 3. Q-matrix used in the simulations 

 Attributes   Attributes 

Item A1 A2 A3 A4 A5 A6  Item A1 A2 A3 A4 A5 A6 

1 1 0 0 0 0 0  11 0 0 0 0 1 1 

2 0 1 0 0 0 0  12 1 0 0 0 0 1 

3 0 0 1 0 0 0  13 1 1 1 0 0 0 

4 0 0 0 1 0 0  14 0 1 1 1 0 0 

5 0 0 0 0 1 0  15 0 0 1 1 1 0 

6 0 0 0 0 0 1  16 0 0 0 1 1 1 

7 1 1 0 0 0 0  17 1 0 0 0 1 1 

8 0 1 1 0 0 0  18 1 1 0 0 0 1 

9 0 0 1 1 0 0  19 1 0 0 0 0 0 

10 0 0 0 1 1 0  20 0 0 0 0 0 1 

Note. A1 through A6 = Measured attributes by the test. 

Data Generation and Model Estimation 

The two-levels of item quality were combined with the other factors considered in the study. For the 

higher item quality conditions (HQ), the lowest and highest success probabilities (i.e., P(0) and P(1)) were 

drawn drawn from U(0.05, 0.20) and U(0.80, 0.95). These two probability parameters are the guessing and 1-

slip parameters, respectively. For the lower item quality (LQ) conditions, the lowest and highest success 

probabilities were drawn from U(0.15, 0.30) and U(0.70, 0.85), respectively. The test length and number of 

measured attributes were fixed to 20-items and six-attributes.  

Examinees' attribute profiles followed a uniform distribution of permissible latent classes. The attributes 

were generated based on the permissible latent classes defined by the linear, convergent, divergent, and 

unstructured attribute conditions in the first simulation study. In the second simulation, attribute profiles 

generated based on the permissible latent classes defined by three hypothetical hierarchies given in Figure 2. 

In both studies, 100 data sets were generated and analyzed for each condition. Item parameters estimated 

using marginal maximum likelihood (MMML) estimator via expectation-maximization (EM) algorithm. 

Attribute estimation was carried out based on expected a posteriori (EAP) estimator. Data generation and 

model estimation were performed through the Oxmetrics programming language (Doornik, 2011). All factors 

considered in these two simulation studies are presented in Table 4. 

Table 4. Simulation factors 

Simulation I 

CDM Sample size True structure Item quality Selection criterion LRT α-level 

DINA 500 Linear Higher quality LRT 𝛼=.01 

DINO 1000 Convergent Lower quality AIC 𝛼=.05 

  Divergent  BIC 𝛼=.10 

  Unstructured   𝛼=.20 

Simulation II 

CDM Sample size True str. Item quality Selection criterion Candidate structure 

DINA 500 𝑆2 Higher quality LRT 𝑆1 

DINO 1000  Lower quality AIC 𝑆2 

    BIC 𝑆3 

Note. DINA = deterministic input, noisy "and" gate model; DINO = deterministic input, noisy "or" gate model; LRT = 

likelihood ratio test; AIC = Akaike information criterion; BIC = Bayesian information criterion. 
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Results and Discussion 

Results of Simulation Study I 

To assess the viability of the search algorithm, the empirical Type-I and Type-II error rates (i.e., false 

positive and false negative) were computed. The complement of Type-I error rate (i.e., true-negative) can be 

referred to as sensitivity that indicates the proportion of retained null hypothesis when it is true. Likewise, the 

complement of Type-II error rate (i.e., true-positive) may be referred to as specificity that reports the proportion 

of rejected null hypothesis when it is wrong. Sensitivity and specificity levels of the search algorithm are presented 

in Table 5. Given proportions of sensitivity and specificity in the table were obtained by averaging across the 

true and false hypothesized pairwise relationships in each replication. For example, in linear structure, half of 

the hypotheses we test are true and the other half of them are wrong. Thus, sensitivity and specificity rates are 

the average of 15 hypothesis test results across 100 replications. 

Table 5. Hypothesis testing results in terms of sensitivity and specificity: LRT 

    Linear Convergent Divergent Unstructured 

CDM N IQ Sig. level SEN. SPE. SEN. SPE. SEN. SPE. SEN. SPE. 

DINA 500 HQ 𝛼=.001 1.000 .993 .714 .961 1.000 1.000 NA 1.000 

   𝛼=.005 .999 .998 .714 .979 1.000 1.000 NA 1.000 

   𝛼=.010 .999 .999 .714 .982 1.000 1.000 NA 1.000 

   𝛼=.020 .998 .999 .714 .988 1.000 1.000 NA 1.000 

  LQ 𝛼=.001 1.000 .867 .715 .906 1.000 .939 NA .967 

   𝛼=.005 1.000 .903 .714 .923 1.000 .962 NA .986 

   𝛼=.010 .999 .918 .714 .926 1.000 .970 NA .993 

   𝛼=.020 .997 .931 .712 .934 .998 .982 NA .995 

 1000 HQ 𝛼=.001 1.000 1.000 .714 .997 1.000 1.000 NA 1.000 

   𝛼=.005 1.000 1.000 .714 .999 1.000 1.000 NA 1.000 

   𝛼=.010 1.000 1.000 .714 .999 1.000 1.000 NA 1.000 

   𝛼=.020 1.000 1.000 .714 .999 1.000 1.000 NA 1.000 

  LQ 𝛼=.001 1.000 .941 .714 .940 1.000 .992 NA .999 

   𝛼=.005 1.000 .959 .714 .942 1.000 .995 NA 1.000 

   𝛼=.010 1.000 .965 .714 .949 1.000 .998 NA 1.000 

   𝛼=.020 1.000 .974 .714 .954 1.000 .999 NA 1.000 

DINO 500 HQ 𝛼=.001 1.000 .987 .918 .971 1.000 .969 NA 1.000 

   𝛼=.005 1.000 .991 .874 .982 1.000 .979 NA 1.000 

   𝛼=.010 1.000 .995 .842 .987 1.000 .983 NA 1.000 

   𝛼=.020 1.000 .997 .811 .994 .999 .988 NA 1.000 

  LQ 𝛼=.001 .999 .874 .999 .789 1.000 .696 NA .966 

   𝛼=.005 .999 .906 .993 .853 .999 .796 NA .984 

   𝛼=.010 .999 .921 .990 .880 .998 .838 NA .992 

   𝛼=.020 .997 .932 .984 .907 .996 .880 NA .995 

 1000 HQ 𝛼=.001 1.000 1.000 .763 .996 1.000 .995 NA 1.000 

   𝛼=.005 1.000 1.000 .743 .999 1.000 .996 NA 1.000 

   𝛼=.010 1.000 1.000 .730 .999 1.000 .997 NA 1.000 

   𝛼=.020 1.000 1.000 .724 .999 1.000 .999 NA 1.000 

  LQ 𝛼=.001 1.000 .939 .996 .927 1.000 .915 NA 1.000 

   𝛼=.005 1.000 .956 .986 .939 1.000 .940 NA 1.000 

   𝛼=.010 1.000 .963 .973 .947 1.000 .954 NA 1.000 

   𝛼=.020 1.000 .971 .947 .960 1.000 .964 NA 1.000 

Note. N = sample size; IQ = item quality; Sig. level = significance level; SEN. = rate of retaining true null hypothesis; SPE. = 

rate of rejecting false null hypothesis; HQ = higher quality; LQ = lower quality; and NA = not applicable. 
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Observed sensitivity rates are, in general, close to 1 for linear and divergent hierarchies. The minimum 

sensitivity rates (i.e., .997 and .996 for the DINA and DINO) were observed under the significance level of .20, 

the sample size of 500 and lower item quality. Observed sensitivity rates were even smaller in conditions 

where larger sample and higher item quality employed. In contrary to the results for the linear and divergent 

cases, reduced sensitivity rates were obtained for the convergent hierarchical structure case. Observed 

sensitivity in convergent hierarchy case was .714 for the DINA model conditions; whereas sensitivity rates 

varied from .724 to .999 in DINO model conditions. These low sensitivity rates in the convergent cases may be 

due to the fact that A5 can be mastered after mastering either A3 or A4. Notice that Type-I error results in 

additional latent classes to be allowed in the permissible latent class set. In contrast, Type-II error yields in 

discarding some of the latent classes that conform to the true hierarchical structure. Therefore, adverse impact 

of conducting Type-II error on model estimation may be much stronger in comparison to the negative impact 

of conducting Type-I error.  

Table 6. Hypothesis testing results: AIC and BIC 

   AIC  BIC 

   DINA DINO  DINA DINO 

N Hierarchy IQ SEN. SPE. SEN. SPE.  SEN. SPE. SEN. SPE. 

500 Linear HQ .999 .992 1.000 .987  .989 .999 .996 1.000 

  LQ .999 .867 1.000 .872  .962 .969 .968 .965 

 Convergent HQ .714 .961 .913 .976  .811 .996 .720 .999 

  LQ .715 .906 .997 .791  .695 .962 .891 .955 

 Divergent HQ 1.000 1.000 1.000 .981  .992 1.000 .995 .996 

  LQ 1.000 .938 1.000 .714  .966 .997 .965 .960 

 Unstructured HQ NA 1.000 NA 1.000  NA 1.000 NA 1.000 

  LQ NA .966 NA .966  NA 1.000 NA 1.000 

1000 Linear H 1.000 1.000 1.000 1.000  .994 1.000 .999 1.000 

  LQ 1.000 1.060 1.000 .939  .992 .994 .988 .991 

 Convergent HQ .714 .996 .763 .996  .711 1.000 .713 1.000 

  LQ .714 .940 .996 .928  .711 .971 .867 .974 

 Divergent HQ 1.000 1.000 1.000 .995  .996 1.000 .990 .999 

  LQ 1.000 .992 1.000 .915  .991 1.000 .980 .981 

 Unstructured HQ NA 1.000 NA 1.000  NA 1.000 NA 1.000 

  LQ NA .999 NA 1.000  NA 1.000 NA 1.000 

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; N = sample size; IQ = item quality; SEN. = 

rate of retaining true null hypothesis; SPE. = rate of rejecting false null hypothesis; HQ = high quality; LQ = low quality. 

Under the larger sample size conditions, the smallest specificity rates for the DINA and DINO models 

were .940 and .915, respectively. The corresponding rates for the small sample conditions were .867 and .696, 

respectively. The specificity rates increased significantly and approached to one under the higher quality item 

conditions. For the larger sample size cases, the reported specificities for all conditions were about and over 

.940 and .995 for the lower and higher item quality conditions, respectively. Corresponding rates for the small 

sample cases were reported as .870 and .960, respectively, when the estimating model was the DINA model. 

When it was the DINO model, these observed specificity rates were comparable to the DINA results under the 

linear and convergent hierarchies, but the rates were lower in the divergent hierarchy. In terms of the impact 

of significance level, empirical Type-I error rates were much smaller than the nominal alpha levels for the 

linear and divergent hierarchical structure cases. However, it was not the case for the convergent hierarchical 

structure cases. 

Table 6 presents the sensitivity and specificity rates obtained with the AIC and BIC model selection 

criteria. Comparison of the results of the LRT, AIC, and BIC showed that the results of the AIC criterion were 
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almost identical to the results of the LRT under significance level of .01. Moreover, when the BIC and LRT 

results were compared, the BIC significantly increased the specificity rates with a smallest specificity rate of 

.955 across all conditions. However, in return, sensitivity rates slightly decreased (down to .95). When the BIC 

was employed as the model selection criterion, both sensitivity and specificity rates were above .95 for all 

conditions of linear, divergent, and unstructured hierarchies. Therefore, BIC may be slightly more informative 

criterion for detecting direct prerequisite relationships among the attributes. 

Results of Simulation Study II 

Simulation results for structure selection are presented in Table 7. The results were presented in terms 

of null hypothesis rejection rates across 100 replications.  Each of the null hypothesis specifies that the more 

parsimonious model (model considering a more strict hierarchical structure) fits the data as good as the more 

general model. True hierarchical structures (i.e., generating hierarchical structures) are given in the columns 

of the table. The candidate hierarchical structures that are used to restrict the models to follow the hierarchies 

are given in the rows of the table. For example when generating hierarchical structure among the attributes 

was 𝑆1, fit of the model structured by 𝑆1 was compared with the model-fits that are obtained by fitting the 

models structured by 𝑆2 and 𝑆3.  

Table 7. Structure selection results for the DINA and DINO models 

   Higher Quality Items  Lower Quality Items 

   DINA  DINO  DINA  DINO 

N SM HS 𝑆1 𝑆2 𝑆3  𝑆1 𝑆2 𝑆3  𝑆1 𝑆2 𝑆3  𝑆1 𝑆2 𝑆3 

500 LRT 𝑆1 --- 1.00 1.00  --- 1.00 .96  --- 1.00 1.00  --- .95 .48 

  𝑆2 .00 --- 1.00  .02 --- 1.00  .00 --- 1.00  .03 --- .95 

  𝑆3 .00 .01 ---  .00 .00 ---  .00 .00 ---  .02 .02 --- 

 AIC 𝑆1 --- 1.00 1.00  --- 1.00 1.00  --- 1.00 1.00  --- .97 .99 

  𝑆2 .01 --- 1.00  .06 --- 1.00  .01 --- 1.00  .06 --- .97 

  𝑆3 .00 .01 ---  .00 .02 ---  .00 .03 ---  .02 .03 --- 

 BIC 𝑆1 --- 1.00 1.00  --- .96 .86  --- 1.00 1.00  --- .58 .23 

  𝑆2 .00 --- 1.00  .00 --- .93  .00 --- 1.00  .00 --- .51 

  𝑆3 .00 .00 ---  .00 .00 ---  .00 .00 ---  .00 .00 --- 

1000 LRT 𝑆1 --- 1.00 1.00  --- 1.00 .96  --- 1.00 1.00  --- 1.00 1.00 

  𝑆2 .00 --- 1.00  .02 --- 1.00  .00 --- 1.00  .00 --- 1.00 

  𝑆3 .00 .00 ---  .02 .02 ---  .00 .00 ---  .00 .00 --- 

 AIC 𝑆1 ---- 1.00 1.00  --- 1.00 1.00  --- 1.00 1.00  --- 1.00 1.00 

  𝑆2 .00 --- 1.00  .04 --- 1.00  .00 --- 1.00  .03 --- 1.00 

  𝑆3 .00 .00 ---  .01 .03 ---  .00 .01 ---  .00 .03 --- 

 BIC 𝑆1 --- 1.00 1.00  --- 1.00 1.00  --- 1.00 1.00  --- .92 .74 

  𝑆2 .00 --- 1.00  .00 --- 1.00  .00 --- 1.00  .00 --- .87 

  𝑆3 .00 .00 ---  .00 .00 ---  .00 .00 ---  .00 .00 --- 

Note. N  = sample size; SM = selection method; HS = hierarchical structure; LRT = likelihood ratio test; AIC = Akaika 

information criterion; and BIC = Bayesian information criterion. 

Under the sample size of 500 and higher quality items, rejection rates of 𝑆1 were .00 and .00 in favor of 

𝑆2 and 𝑆3, respectively. In other words, all the null hypotheses were retained such that structured model based 

on 𝑆1 was fitted to the data as good as the structured models consistent with hierarchies 𝑆2 and 𝑆3. Similarly, 

when generating hierarchy was 𝑆2, fit of the model structured by 𝑆2 was compared against the models 

structured by 𝑆1 and 𝑆3. Fit of the model based on 𝑆1 was rejected 100% of the time in favor of the model 

consistent with 𝑆2. Furthermore, the model conforming 𝑆2 was rejected 0% of the time in favor of the model 

set by 𝑆3. Thus, the true model was selected 100% of the time. 
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Table 7 shows that regardless of the sample size and item quality levels, all three selection-criteria (i.e., 

LRT, AIC, and BIC) almost always selected the true hierarchy when the various structured versions of the 

DINA model were fitted. Under the DINO model conditions, all three model-selection methods detected the 

generating structure at and above 95% of the time under higher sample size and higher item quality conditions. 

However, performance of the model selection criteria, especially the performance of the BIC, significantly 

decreased with decrease in the item quality. Results indicated further reduction in detection success of the true 

hierarchical structure under the smaller sample sizes.  

Results given in tables 7 suggest that true hierarchical structure can be detected by all three model-

selection methods, especially when items are in higher quality and the sample size is larger than 500 

examinees. Results showed that when the generating model was the DINA model, performance of model-

selection methods in detection of the true hierarchical structure was quite high even when the item quality 

was lower. Although the observed results show that hierarchical structure selection for the DINO model cases 

were not be as accurate, the observed differences under the DINA and DINO models could be due to the Q-

matrix used in this study. 

Real Data Analysis 

A numerical example for hierarchy detection and selection was also conducted.  The dataset consists of 

2922 examinees' binary responses to the 28 items. These are the examinee responses to the grammar section of 

the Examination for the Certificate of Proficiency in English (ECPE). The test was developed and administered 

by the University of Michigan English Language Institute in 2003. The response data and the Q-matrix are 

available in and obtained from the 'CDM' package (Robitzsch, Kiefer, George, & Uenlue, 2014) in R software 

environment for statistical computing. This test with 28 items measures three attributes that are referred to as 

A1: lexical rules, A2: cohesive rules, and A3: morphosyntactic rules. 

Table 8. Attribute hierarchy search on ECPE 

Null A1  A2  A3 Full 

hypothesis A2 A3  A1 A3  A1 A2 model 

-2LL 85689.47 85689.76  85721.90  85701.65  85912.15 85745.69 85686.52 

Deviance 2.95 3.24  35.37 15.12  225.63 59.16 --- 

p-values .22 .20  .00 .00  .00 .00 --- 

AIC 85705.47  85705.76  85737.90 85717.65  85928.15 85761.69 85706.52 

BIC 85753.31 85753.60  85785.74 85765.49  85975.99  85809.53 85766.32 

Note. A1 = lexical rules; A2 = cohesive rules; A3 = morphosyntactic rules; AIC = Akaika information criterion; and BIC = 

Bayesian information criterion. 

The exhaustive search algorithm was employed to detect hierarchical relationships among these three 

attributes. Model selection results obtained through the LRT, AIC, and BIC were summarized in Table 8. The 

LRT and AIC based model selection results indicated that null models assuming A1 was prerequisite to A2, 

and A1 was prerequisite to A3 fitted to the data as well as the full model (i.e., unstructured model that allows 

all latent classes in the estimation). Furthermore, on top of the two null models retained by the LRT and AIC, 

BIC has retained another null model, which has assumed that A2 was a prerequisite attribute for A3.  

Therefore, when the model selection criterion was either LRT or AIC, exhaustive search algorithm 

resulted in a divergent hierarchical structure such that A1 was prerequisite for both A2 and A3. However, BIC 

resulted in a linear hierarchical structure A1 is prerequisite attribute for A2, which, in turn, is a prerequisite 

attribute for A3. In linear and divergent attribute structures, rather than all eight (i.e., 23) latent classes, four 

and five latent classes are permissible, respectively. The permissible latent classes in the linear hierarchical 

structure are: 000, 100, 110, and 111. The latent class 101 is also permissible in the divergent hierarchical 

structure. Then, comparing the likelihoods of these two computing hierarchically structured models may help 
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us to choose one or the other. When the fit of the models structured by these two attribute hierarchies were 

compared, the linear hierarchy was rejected in favor of the divergent hierarchy (p-value = .000 and degrees of 

freedom = 1).  

Conclusion 

In conditions where measured attributes hold a hierarchical structure, cognitive diagnosis model 

estimation may be improved by incorporating the hierarchical attribute structure into the estimation process. 

To benefit from this incorporation, attribute hierarchy must be correct. Otherwise, considering incorrect 

assumptions on the hierarchical relationships in the model estimation process may degrade accuracy of 

obtained information. This study proposes an empirical exhaustive search algorithm to detect hierarchical 

relationships among the attributes. The viability of the algorithm is also investigated in this study under 

various conditions. For each of all possible pairwise prerequisite relationships, the search algorithm tests the 

fits of the hierarchically structured CDMs against the unrestricted CDM. Hierarchically structured CDMs do 

not allow impermissible latent classes in the estimation such that these CDMs are nested within the 

unstructured one.  

Results of the study indicated that the likelihood ratio test based exhaustive search yields an R-matrix 

that specifies all the prerequisite relationships among the attributes forming a linear or divergent hierarchy. It 

only fails to recover a convergent hierarchical structure where two or more attributes are prerequisite for an 

attribute. In such cases, mastering one of the several prerequisite will allow examinee to master the more 

complex attribute. In other words, when there is more than one way of being able to master the more complex 

attribute, then the search algorithm may have hard time detecting these prerequisite relationships. In cases 

where attributes have a convergent structure, the exhaustive search yields a more liberal structure, in which 

some truly impermissible latent classes are added on top of true permissible latent class set. Even in such cases, 

the exhaustive search eliminates many of the non-existing latent classes. It should be noted here that, even if 

the method is promising, it should be used to complement method rather than to replace the conventional 

subjective procedures. Because the exhaustive search is computationally intensive it may be possible to 

develop more efficient algorithms. One way of accomplishing this requires fixing the prerequisite relationship, 

when found, for the rest of the search. Then, the number of remaining possible pairwise prerequisite 

relationships to be checked will be reduced.  

The secondary purpose of this study was to assess the viability of model-fit based hierarchical structure 

selection. The study results showed that, through the likelihood model selection criteria, a model structured 

by the generating attribute hierarchy could be selected accurately when the several candidates are present. 

Under high item quality conditions, correct hierarchy selection rates of LRT, AIC, and BIC may be % or even 

higher. In practice, when candidate hierarchies are nested, LRT may be used for model selection purposes. 

However, when the candidates are not nested, practitioner can always consider the AIC and BIC results to for 

the final decision.  

Although some factors, which may have impact on the performance of the search algorithm, are 

considered in the current study, more factors such as test lengths and number of measured attributes may also 

be considered. Thus, considering only a fixed test length, fixed number of measured attributes, and one single 

Q-matrix is among the limitations of the study. Furthermore, investigation of impact of misspecifications in 

Q-matrix on the performance of search algorithm and hierarchy selection may also be instructive. Therefore, 

investigation of the impact of misspecifications in Q-matrices may be the next step. 
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Appendix. Permissible latent classes defined by the hierarchical structures 

  

 

 


