Difficulties Experienced By Pre-service Elementary Teachers İn Constructing Stories About Line Graphs

Author :  

Year-Number: 2012-Volume 4, Issue 3
Language : null
Konu : null

Abstract

The study aimed to determine possible difficulties of pre-service elementary teachers in creating daily-life stories about line graphs. It was conducted with 80 pre-service teachers studying in the final year of an Elementary Teacher Education Program at a university in eastern Turkey. The three-item Story Construction Test developed about line graphs was used as the data collection instrument. It was found that the pre-service teachers had certain difficulties in constructing daily-life stories suitable for line graphs. The pre-service teachers had the most difficulty in translating the continuous change in the graphs to the stories they constructed. In addition, other difficulties were noted in the pre-service teachers such as inability to convey the starting value in the graph to the story, inability to represent linear change (increase or decrease), inability to represent the breaking points in the graph, and inability to convey the ending value in the graph to the story in the stories where continuous change was represented.

Keywords

Abstract

The study aimed to determine possible difficulties of pre-service elementary teachers in creating daily-life stories about line graphs. It was conducted with 80 pre-service teachers studying in the final year of an Elementary Teacher Education Program at a university in eastern Turkey. The three-item Story Construction Test developed about line graphs was used as the data collection instrument. It was found that the pre-service teachers had certain difficulties in constructing daily-life stories suitable for line graphs. The pre-service teachers had the most difficulty in translating the continuous change in the graphs to the stories they constructed. In addition, other difficulties were noted in the pre-service teachers such as inability to convey the starting value in the graph to the story, inability to represent linear change (increase or decrease), inability to represent the breaking points in the graph, and inability to convey the ending value in the graph to the story in the stories where continuous change was represented.

Keywords


  • Altun, M. (2008). İlköğretim ikinci kademe (6,7 ve 8. Sınıflarda) matematik öğretimi (5. Baskı). Bursa: Aktüel Yayınları.

  • Arteaga, P., & Batanero, C. (February 2011). Relating graph semiotic complexit omprehension in statistical graphs prospective teachers. Paper presented at the meeting of the Seventh Congress of the European Society for Research in Mathematics Education, Rzeszow, Poland.

  • Aydoğdu-İskenderoğlu, T., & Baki, A. (2011). İlköğretim 8. sınıf matematik ders kitabındaki soruların PISA matematik yeterlik düzeylerine göre sınıflandırılması. Eğitim ve Bilim, 36(161), 287-301.

  • Ball, D. L., & McDiarmid, G. W. (1990). The subject matter preparation of teachers. In R.Houston (Ed.), Handbook of research on teacher education (pp. 437-449). New York: Macmillan.

  • Bayazit, İ. (2011). Öğretmen adaylarının grafikler konusundaki bilgi düzeyleri. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 10(4),1325 -1346.

  • Beichner, R. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750-762.

  • Berberoğlu, G. (2007). Türk Bakış Açısından PISA Araştırma Sonuçları, Konrad Adenauer Stiftung Vakfı. [Online]: http://www.konrad.org.tr/Egitimturk/07girayberberoglu.pdf adresinden 07.02.2012 tarihinde alınmıştır.

  • Berg, C. A., & Philips, D.G. (1994). An investigation of the relationship between logical thinking and the ability to construct and interpret line graphs. Journal of Research in Science Teaching, 31(4), 323-344.

  • Bowen, G. M., & Roth, W. M. (2005). Data and graph interpretation practices among pre-service science teachers. Journal of Research in Science Teaching, 42(10), 1063-1088.

  • Bowen, G. M., Roth, W. M., & McGinn, M. K. (1999). Interpretations of graphs by university biology students and practicing scientists: towards a social practice view of scientific re-presentation practices. Journal of Research in Science Teaching, 36(9), 1020-1043.

  • Brasell, H. M., & Rowe, M. B. (1993). Graphing skills among high school physics students. School Science and Mathematics, 93(2), 63-70.

  • Bruno, A., & Espinel, M. C. (2009). Construction and evaluation of histograms in teacher training. International Journal of Mathematical Education in Science and Technology, 40(4), 473-493.

  • Burgess, T. (2002). Investigating the “data sense” of pre-service teachers. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics, Cape Town, South Africa: International Association for Statistics Education. http://www.stat.auckland.ac.nz/~iase/publications/1/6e4_burg.pdf adresinden 12.09.2011 tarihinde alınmıştır.

  • Capraro, M. M., Kulm, G., & Capraro, R. M. (2005). Middle grades: Misconceptions in statistical thinking. School Science and Mathematics Journal, 105(4), 1–10.

  • Clement, J. (1985). Misconceptions in graphing. Proceedings of the Ninth International Conference for the Psychology of Mathematics Education, 1, 369-375.

  • Çelik, D., & Sağlam-Arslan, A. (2012). Öğretmen adaylarının çoklu gösterimleri kullanma becerilerinin analizi. İlköğretim Online, 11(1), 239-250. [Online]: http://ilkogretim-online.org.tr adresinden 06.02.2012 tarihinde alınmıştır.

  • DeWindt-King, A. M., & Goldin, G. A. (2003). Children’s visual imagery: Aspects of cognitive representation in solving problems with fractions. Mediterranean Journal for Research in Mathematics Education, 2(1), 1-42.

  • Dreyfus, T., & Eisenberg, T. (1996). On different facets of mathematical thinking. In R. J. Sternberg, & T. Ben- Zeev (Eds.), The nature of mathematical thinking (pp. 253-284). Mahwah, NJ: Erlbaum.

  • Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1–16.

  • Espinel, C., Bruno, A., & Plasencia, I. (2008). Statistical graphs in the training of teachers. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (2008). Proceedings of the Joint ICMI /IASE Study Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education. Monterrey, México: ICMI &IASE. CD ROM.

  • Gagatsis, A., & Elia, I. (2004). The effects of different modes of representation on mathematical problem solving. In M. J. Hoines & A. B. Fuglestad (Eds.), The 28th Conference of the International Group for the Psychology of Mathematics Education: Vol. 2. (pp. 447-454). Bergen: Bergen University College.

  • Goldin, G. A. (2004). Representations in school mathematics: A unifying research perspectives. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A Research Companion to Principles and Standards for School Mathematics (pp. 275-285). Reston, VA: NCTM.

  • Goldin, G. A., & Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe & P. Nesher (Eds.), Theories of mathematical learning (pp. 397-430). Mahwah, NJ: Erlbaum Associates.

  • Goldin, G. A., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The roles of representations in school mathematics: 2001 year book (pp. 1-23). Reston, VA: NCTM.

  • Hadjidemetriou, C., & Williams, J. S. (2002). Children’s graphical conceptions. Research in Mathematics Education, 4, 69-87.

  • Hart, D. K. (1992). Building concept images: Supercalculators and students use of multiple representations in calculus (Unpublished doctoral dissertation). Oregon State University.

  • Heinze, A., Star J. R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. ZDM Mathematics Education, 41(5), 535–540.

  • Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner, & C. Kieran (Eds.), Research Issues in The Learning and Teaching of Algebra (pp. 167–194). Hillsdale, NY: Erlbaum.

  • Kaput, J. J. (1998). Representations, inscripions, descriptions and learning: Kaleidoscope of windows. Journal of Mathematical Behavior, 17(2), 265-281.

  • Karaca, N. (2010). Bilgisayar destekli animasyonların grafik çizme ve yorumlama becerisinin geliştirilmesine etkisi: “yaşamımızdaki sürat örneği (Yayınlanmamış yüksek lisans tezi). Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü.

  • Keesy, (2011). Word Problems: The effects of learner generated drawings on problem solving (Unpublished doctoral dissertation). Capella University.

  • Köklü, N., Büyüköztürk, Ş., & Bökeoğlu, Ö. Ç. (2007). Sosyal bilimler için istatistik (2. Baskı). Ankara: Pegem A Yayıncılık.

  • Kwon, O. N. (2002). The effect of calculator based ranger activities on students’ graphing ability. School Science and Mathematics, 102(2), 57-67.

  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.

  • Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. In M.Anderson, A. Sáenz-Ludlow, S. Zellweger, & V. V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 215–234). Ottawa: Legas Publishing.

  • Lesh, R., & Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh ve H. Doerr (Eds.) Beyond Constructivism. (pp. 3-34). Hillsdale, NJ: Erlbaum.

  • Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Claude Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 33-40), Hillsdale, NJ: Erlbaum.

  • Li, D. Y., & Shen, S. M. (1992). Students’ weaknesses in statistical projects. Teaching Statistics 14(1), 2-8.

  • Mckenzie, D. L., & Padilla M. J. (1986). The construction and validation of test of graphing in science. Journal of Research in Science Teaching, 23(7), 1-9.

  • Mcmillan, H. J., & Schumacher, S. (2010). Research in education (7. Baskı). Boston, USA: Pearson Education.

  • Milli Eğitim Bakanlığı (2002). İlköğretim öğrencilerinin başarılarının belirlenmesi (ÖBBS-2002), Durum belirleme raporu. [Online] http://earged.meb.gov.tr/dosyalar/obbs/obbs_2002_raporu.pdf adresinden 06.02.2012 tarihinde alınmıştır.

  • Milli Eğitim Bakanlığı (2005). PISA 2003 projesi ulusal nihai raporu (EARGED). [Online] http://earged.meb.gov.tr/dosyalar%5Cdokumanlar%5Culuslararasi/pisa_2003_ulusal_raporu.pdf adresinden 06.02.2012 tarihinde alınmıştır.

  • Milli Eğitim Bakanlığı (2007). PISA 2006 projesi ulusal nihai raporu (EARGED). [Online] http://earged.meb.gov.tr/dosyalar/dokumanlar/uluslararasi/PISA2006.pdf adresinden 06.02.2012

  • Milli Eğitim Bakanlığı (2009). İlköğretim matematik dersi 1-5. sınıflar öğretim programı. http://ttkb.meb.gov.tr/program.aspx?tur=ilkogretim&lisetur=&ders=&sira=derse&sinif=&sayfa=2 adresinden 08.08.2011 tarihinde alınmıştır.

  • Milli Eğitim Bakanlığı (2011). TIMSS 2007 ulusal matematik ve fen raporu 8. sınıflar (EARGED). [Online] http://earged.meb.gov.tr/arasayfa.php?g=114 adresinden 06.02.2012 tarihinde alınmıştır.

  • Monk, G. S. (1994). Students’ understanding of function in calculus courses. Humanistic Mathematics Network Journal, 9, 21-27.

  • Monteiro, C., & Ainley, J. (2007). Investigating the interpretation of media graphs among student teachers. International Electronic Journal of Mathematics Education 2(3), 188-207.

  • Mousley, J. (2004). An aspect of mathematical understanding: The notion of “connected knowing”. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education 3,377-384. Bergen, Norway: Bergen University College.

  • National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. Reston, VA: NCTM Publications.

  • Porzio, D. (1999). Effects of differing emphases in the use of multiple representations and technology on students understanding of calculus concepts. Focus on Learning Problems in Mathematics, 21(3), 1-29.

  • Roth, W. M., & Bowen, G. M. (1999). Complexities of graphical representations during ecology lectures: An analysis rooted in semiotics and hermeneutic phenomenology. Learning and Instruction, 9(3), 235-255.

  • Sevimli, E. (2009). Matematik öğretmen adaylarının belirli integral konusundaki temsil tercihlerinin uzamsal yetenek ve akademik başarı bağlamında incelenmesi (Yayınlanmamış yüksek lisans tezi). Marmara Üniversitesi, Eğitim

  • Temiz, K. B., & Tan, M. (2009). Lise 1. sınıf öğrencilerinin grafik yorumlama becerileri. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 28, 31-43.

  • Uyanık, F. (2007). Ortaöğretim 10. sınıf öğrencilerinin grafik anlama ve yorumlamaları ile kinematik başarıları arasındaki ilişki (Yayınlanmamış yüksek lisans tezi). Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü.

                                                                                                                                                                                                        
  • Article Statistics