Profiles of University Students According to Internet Usage with the Aim of Entertainment and Communication and their Affinity to Internet

Author :  

Year-Number: 2012-Volume 4, Issue 1
Language : null
Konu : null

Abstract

For university students, there are three major activities such as activities for academic/learning purposes, communication and entertainment. Using attractive and various activities on the Internet would mean intensive and long usage of Internet, and intensive and long usage of Internet is considered as a predictor of problematic Internet use. However, affinity to Internet might be the reason of intensive Internet usage. Internet affinity is the degree to which people feel attached to the Internet. The aim of this study is to determine the profile of university students who are considered as digital natives according to their Internet usage with the aim of entertainment or communication and understand whether their profiles have differed depending on affinity to internet. Cluster and variance analysis procedures were used to identify students’ entertainment and communication oriented Internet use profiles and to examine differences in students’ affinity to Internet. Three hundred fifty-eight university students completed questionnaire about their affinity with Internet, social networking, online gaming, instant messaging/chatting, e-mailing, and downloading series or movies. Results of the study show that university student digital natives divide into two profiles in the sense of using Internet with the aim of entertainment and communication and the affinity to Internet has great effect on this division. The profile of the first cluster is composed of the students who are mostly male, use Internet intensively, and those who give great importance to this media. Students in the second cluster have the profile which uses Internet less intensively, and give importance to Internet at medium level.

Keywords

Abstract

For university students, there are three major activities such as activities for academic/learning purposes, communication and entertainment. Using attractive and various activities on the Internet would mean intensive and long usage of Internet, and intensive and long usage of Internet is considered as a predictor of problematic Internet use. However, affinity to Internet might be the reason of intensive Internet usage. Internet affinity is the degree to which people feel attached to the Internet. The aim of this study is to determine the profile of university students who are considered as digital natives according to their Internet usage with the aim of entertainment or communication and understand whether their profiles have differed depending on affinity to internet. Cluster and variance analysis procedures were used to identify students’ entertainment and communication oriented Internet use profiles and to examine differences in students’ affinity to Internet. Three hundred fifty-eight university students completed questionnaire about their affinity with Internet, social networking, online gaming, instant messaging/chatting, e-mailing, and downloading series or movies. Results of the study show that university student digital natives divide into two profiles in the sense of using Internet with the aim of entertainment and communication and the affinity to Internet has great effect on this division. The profile of the first cluster is composed of the students who are mostly male, use Internet intensively, and those who give great importance to this media. Students in the second cluster have the profile which uses Internet less intensively, and give importance to Internet at medium level.

Keywords


  • Akbulut, Y. (2010). Sosyal bilimlerde SPSS uygulamaları. İstanbul:İdeal Kültür & Yayıncılık.

  • Akdağ, M., Karahan, M. (2004). Üniversite öğrencilerinin bilgi okuryazarlık düzeylerinin çeşitli değişkenler açısından incelenmesi. Eğitim ve Bilim, 29(134), 19-27.

  • Anderson, T.T. (2005). Relationships among internet attitudes, internet use, romantic beliefs, and perceptions of online romantic relationships. Cyberpsychology & Behavior, 8(6), 521 – 531.

  • Bakken, I.J.,Wenzel, H.G., Götestam, K.G., Johansson, A.,Øren, A. (2009). Internet addiction among Norwegian adults: A stratified probability sample study. Scandinavian Journal of Psychology, 50(2), 121127.

  • Balcı, Ş., Ayhan, B. (2007). Üniversite öğrencilerinin internet kullanımı ve doyumları üzerine bir saha araştırması. Selçuk İletişim, 5(1), 174-197.

  • Bayraktar, F., Gün, Z. (2007). Incidence and correlates of Internet usage among adolescents in North Cyprus. Cyber Psychology & Behavior, 10 (2), 191-197.

  • Castaño-Muñoz, J., Senges, M. (2011). Youth-culture or student-culture? The internet use intensity divide among university students and the consequences for academic performance. Estudıos Sobre Educacıón, 20, 203-231.

  • Ceyhan, A. A. (2011) University Students’ problematic ınternet use and communication skills according to the ınternet use purposes. Kuram ve Uygulamada Eğitim Bilimleri, 11(1), 69 -77.

  • Ceyhan, E. (2010). Problemli internet kullanım düzeyi üzerinde kimlik statüsünün, internet kullanım amacının ve cinsiyetin yordayıcılığı. Educational Sciences: Theory & Practice, 10(3), 1323 – 1355.

  • Clark, W., Logan, K., Luckin, R., Mee, A., Oliver, M. (2009). Beyond Web 2.0: mapping the technology landscapes of young learners. Journal of Computer Assisted Learning, 25 (1), 56–69.

  • DPT (2010). Bilgi toplumu istatistikleri 2010. T.C.Başbakanlık Devlet Planlama Teşkilatı Müsteşarlığı. Ankara. http://www.bilgitoplumu.gov.tr/Documents/1/Yayinlar/BilgiToplumuIstatistikleri_2010.pdf adresinden 30 Nisan 2011 tarihinde erişildi.

  • Englander, F., Terregrossa, R. A., Wang, Z. (2010). Internet use among college students: Tool or toy?. Educational Review 62 (1),85-96.

  • Ferguson, D. A., Perse, E. M. (2000). The world wide web as a functionalalternativetotelevision. Journal of Broadcasting& Electronic Media, 44, 155-174.

  • Fortson B.L., Scotti, J.R, Chen, Y., Malone, J., Del Ben, K.S. (2007). Internet use, abuse, and dependence among students at a southeastern regional university. Journal Of American College Health, 56(2), 137 – 144.

  • Günüç, S. Kayri, M. (2010). Türkiye’de internet bağımlılık profili ve internet bağımlılık ölçeğinin geliştirilmesi: geçerlik-güvenirlik çalışması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 39, 220-232.

  • Helsper, E.J., Eynon, R. (2010) Digital natives: where is the evidence?British Educational Research Journal, 36(3), 503–520.

  • Huang, R.L., Lu, Z. , Liu,J.J. , You, Y.M., Pan, Z.Q. Wei, Z., He, Q., Wang, Z.Z. (2009). Features and predictors of problematic internet use in Chinese college students. Behaviour & Information Technology. 28 (5), 485–490.

  • Işık, U. (2009). Medya bağımlılığı teorisi doğrultusunda internet kullanımının etkileri ve internet bağımlılığı.İletişim Kuram ve Araştırma Dergisi,28,29-55.

  • Kayri, M. (2007). Araştırmalarda iki aşamalı kümeleme (Two-Step Clustering) analizi ve bir uygulaması. Eurasian Journal of Educational Research, 28, 89-99.

  • Lin, C.-H., Yu, S.-H. (2008). Adolescent Internet usage in Taiwan: exploring gender differences. Adolescence, 43 (170), 317 – 331.

  • Morahan-Martin J, Schumacher P. (2000). Incidence and correlates of pathological Internet use among college students. Computers in Human Behavior, 16, 13–29.

  • Özen, Ü., Sarıcı, M.B. (2010). Yalnızlık olgusu ve sanal sohbetin yalnızlığın paylaşımına etkisi: Üniversite öğrencileri üzerinde bir araştırma. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi,24(1),149-159.

  • Papacharissi, Z.,Rubin, A. M. (2000). Predictors of Intemetuse. Journal of Broadcasting& Electronic Media, 44(2), 175-196.

  • Rowlands, I., Nicholas, D. (2008). Information behavior of the researcher of the future.A CIBER briefing paper. Commissioned by British Library & Joint Information Systems Committee. Centre for Information Behaviour& the Evaluation of Research (CIBER), University College London (UCL), http://www.jisc.ac.uk/media/documents/programmes/reppres/ggworkpackageii.pdf adresinden 30 Temmuz 2011 tarihinde erişildi.

  • SPSS. (2007). SPSS base 16.0 user’s guide. Chicago, IL: SPSS Inc.

  • Sun, S., Rubin, A.M., Haridakis, P.M. (2008). The role of motivation and media ınvolvement in explaining ınternet dependency. Journal of Broadcasting & Electronic Media, 52(3), 408–431.

  • Şahin, İ. (2009). Eğitsel internet kullanım özyeterliği inançları ölçeğinin geçerliği ve güvenirliği. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21, 461-471.

  • Uçar, N. (2009). Kümeleme analiz (Cluster Analysis). Kalaycı, Ş. (Edt), SPSS uygulamalı çok değişkenli istatistik teknikleri (ss. 350-376). Ankara: Asil yayın Dağıtım.

  • Usta, E., Bozdoğan, A.E., Yıldırım, K. (2007). Sınıf öğretmeni adaylarının Internet kullanımına ilişkin tutumlarının değerlendirilmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 8(1), 209-222.

  • Vas, L., Gombor, A. (2009). Exploring internet motives and life satisfaction among hungarian and ısraeli medical students, living in hungary. Journal of Happiness Studies,10(6), 685-701.

  • Weinstein, A., Lejoyeux, M. (2010). Internet addiction or excessive ınternet use. American Journal of Drug & Alcohol Abuse, 36 (5), 277-283.

  • Yaman, M. (2006) Beden eğitimi ve spor bölümü öğrencilerinin internetkullanma yeterlikleri, Spor Yönetimi ve Bilgi Teknolojileri Dergisi, 1(2),18-24.

  • Yıldırım, S. Bahar, H.H. (2008). Eğitim fakültesi öğrencileri ile meslek yüksek okulu öğrencilerinin Internete karşi tutumları (Erzincan Üniversitesi örneği). Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 20,

  • Young, K.S. (2004). Internet addiction: A new clinical phenomenon and its consequences.American Behavioral Scientist, 48, 402–15.

  • Zur, O., Zur, A. (2011).On digital ımmigrants and digital natives: How the digital divide affects families, educational

  • http://www.zurinstitute.com/digital_divide.html adresinden 30 Temmuz 2011 tarihinde erişildi.

                                                                                                                                                                                                        
  • Article Statistics