Adaptation Study of Privacy Management in Social Networks Scale into Turkish

Author :  

Year-Number: 2018-Volume 10, Issue 5
Language : null
Konu :
Number of pages: 65-76
Mendeley EndNote Alıntı Yap

Abstract

Bu çalışmanın amacı, üniversite öğrencilerinin sosyal ağlarda gizlilik yönetimi seviyelerini ölçmek için Mohamed ve Ahmad (2012) tarafından geliştirilen “Sosyal Ağlarda Gizlilik Yönetimi” ölçeğinin Türkçe’ye uyarlamasını yapmaktır. Ölçeğin orijinal formu altı alt faktörden ve toplam 21 maddeden oluşmaktadır. Uyarlama çalışması iki aşamada gerçekleştirilmiştir. İlk aşamada toplam 190 üniversite öğrencisinden toplanan verilerle açımlayıcı faktör analizi yapılmış akabinde 254 üniversite öğrencisinden toplanan verilerle doğrulayıcı faktör analizi yapılmıştır. Analizler sonucunda 19 madde üç faktörden oluşan ölçeğin Türkçe formu elde edilmiştir. Faktörler “algılanan hassasiyet ve tedirginlik”, “ödül” ve “özyeterlik ve yanıt etkililiği” olarak isimlendirilmiştir. Ölçeğin üniversite öğrencilerinin sosyal ağlarda gizlilik yönetimi seviyelerini ölçmede geçerli ve güvenilir olduğu söylenebilir.

Keywords

Abstract

The main goal of the study is to adapt a questionnarie entitled Privacy Management in Social Networks developed by Mohamed and Ahmad (2012) in order to measure undergraduate students’ privacy management levels in social networks. Originally, the questionarrie consisted of six factors with 21 items in total. The adaption process was conducted in two stages. In the first stage, data was collected from 190 undergraduate students to conduct exploratoty factor analysis. In the second stage, confirmatory factor analysis was conducted with the data obtained from 254 undergraduate students. As a result, in Turkish form, the questionnaire is consisted of three factors with 19 items: perceived severity and vulnerability, rewards, and self-efficacy and response efficacy. The findings show that the Turkish version of the questionnaire was reliable and valid to measure undergraduate students’ level of privacy management in social networks.

Keywords


  • Abbasi, A., Zhang, Z., Zimbra, D., Chen, H., & Nunamaker, J. J. F. (2010). Detecting fake websites: The contribution of statistical learning theory. MIS Quarterly, 34, 435-461.

  • Belanger, F. & Crossler, R.E. (2011) Privacy in the Digital Age: A Review of Information Privacy Research in Information Systems. MIS Quarterly 35 (4), 1017-1041.

  • Belanger F, Hiller JS & Smith WJ (2002) Trustworthiness in Electronic Commerce: The Role of Privacy, Security, and Site Attributes. Journal of Strategic Information Systems 11 (3-4), 245-270.

  • Bowler, L., Knobel, C., & Mattern, E. (2015). From cyberbullying to well-being: A narrative based participatory approach to values-oriented design for social media. Journal of the Association for Information Science and Technology, 66, 1274-1293.

  • Büyüköztürk, Ş. (2007). Sosyal Bilimler İçin Veri Analizi El Kitabı (8. Baskı). Ankara: PegemA Yayıncılık.

  • Cattell, R.B. (1966), “The scree test for numbers of factors”, Multivariate Behavioural Research, Vol. 1 No. 2, pp. 245-276

  • Cecere, G., Le Guel, F., & Soulié, N. (2015). Perceived internet privacy concerns on social networks in Europe. Technological Forecasting and Social Change, 96, 277-287.

  • Chen, H., Beaudoin, C. E., & Hong, T. (2016). Protecting oneself online: The effects of negative privacy experiences on privacy protective behaviors. Journalism & Mass Communication Quarterly, 93(2), 409-429.

  • Cheung, C. M., Chiu, P.-Y., & Lee, M. K. (2011). Online social networks: Why do students use Facebook? Computers in Human Behavior, 27(4), 1337–1343

  • Child, J. T., & Petronio, S. (2011). Unpacking the paradoxes of privacy in CMC relationships: The challenges of blogging and relational communication on the internet. Computer-mediated communication in personal relationships, 21-40.

  • Clarke R (1999) Internet Privacy Concerns Confirm the Case for Intervention. Communications of the ACM 42 (2), 60-67.

  • Crossler, R. E. (2010). Protection motivation theory: understanding determinants to backing up personal data. In Proceedings of the 43rd hawaii international conference on system sciences, pp. 1–10.

  • Cudeck, R., & O'Dell, L. L. 1994: Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychol. Bull. 115, 475-487.

  • Çokluk, Ö., Şekercioğlu, G. ve Büyüköztürk, Ş. (2010). Çok değişkenli istatistik SPSS ve LISREL uygulamaları (Birinci baskı). Ankara: Pegem Akademi Yayınları.

  • De Winter, J. C., & Dodou, D. (2012). Factor recovery by principal axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size. Journal of Applied Statistics, 39(4), 695710.

  • Dilmac, B. (2009). Psychological needs as a predictor of cyber bullying: A preliminary report on college students. Educational Sciences: Theory and Practice, 9(3), 1307-1325.

  • Dinev, T., & Hart, P. (2004). Internet privacy concerns and their antecedents –Measurement validity and a regression model. Behavior and Information Technology, 23(6), 413–422.

  • Fabrigar, L.R., Wegener, D.T., MacCallum, R.C. & Strahan, E.J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299.

  • Feng, Y., & Xie, W. (2014). Teens’ concern for privacy when using social networking sites: An analysis of socialization agents and relationships with privacy-protecting behaviors. Computers in Human Behavior, 33, 153-162.

  • Foody, M., Samara, M., & Carlbring, P. (2015). A review of cyberbullying and suggestions for online psychological therapy. Internet Interventions, 2(3), 235-242.

  • Hambleton, R. K., & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. Journal of Applied Testing Technology, 1, 1-30.

  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Articles, 2.

  • Hu, L.T. and Bentler, P.M. (1999), "Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives," Structural Equation Modeling, 6 (1), 1-55.

  • Jöreskog, K. and Sörbom, D. (1993), LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. Chicago, IL: Scientific Software International Inc.

  • Juvonen, J., & Gross, E. F. (2008). Extending the school grounds? Bullying experiences in cyberspace. Journal of School Health, 78, 496-505.

  • Kline, R.B. (2005), Principles and Practice of Structural Equation Modeling (2nd Edition ed.). New York: The Guilford Press.

  • Larose, R., & Rifon, N. J. (2007). Promoting i-safety: Effects of privacy warnings and privacy seals on risk assessment and online privacy behavior. The Journal of onsumer Affairs, 41(1), 217–249.

  • Lee, D., Larose, R., & Rifon, N. (2008). Keeping our network safe: A model of online protection behavior. Behaviour and Information Technology, 27(5), 445–454.

  • Madden, M. (2012). Privacy management on social media sites. Pew Internet Report, 1-20.

  • Malhotra NK, Kim SS and Agarwal J (2004) Internet Users’ Information Privacy Concerns (IUIPC): The Construct, the Scale, and a Causal Model. Information Systems Research 15 (4), 336-355.

  • Mohamed, N., & Ahmad, I. H. (2012). Information privacy concerns, antecedents and privacy measure use in social networking sites: Evidence from Malaysia. Computers in Human Behavior, 28(6), 2366-2375.

  • Moore, T., Clayton, R., & Anderson, R. (2009). The economics of online crime. The Journal of Economic Perspectives, 23(3), 3-20.

  • Murphy, K. R., & Davidsholder, C. O. (1988). Psychological testing: principles and applications. Englewood Cliffs, N.J.: Prentice Hall.

  • Shin, D. (2010). The effects of trust, security and privacy in social networking: A security-based approach to understand the pattern of adoption. Interacting with Computers, vol. 22, no. 5, pp. 428–438.

  • Smith, H. J., Dinev, T., & Xu, H. (2011). Information privacy research: An interdisciplinary review. MIS Quarterly, 35, 989-1016.

  • Smith HJ, Milberg SJ & Burke SJ (1996) Information Privacy: Measuring Individuals’ Concerns About Organizational Practices. MIS Quarterly 20 (2), 167-196.

  • Taneja, A., Vitrano, J., & Gengo, N. J. (2014). Rationality-based beliefs affecting individual’s attitude and intention to use privacy controls on Facebook: An empirical investigation. Computers in Human Behavior, 38, 159-173.

  • Tavşancıl, E. (2005). Tutumların Ölçülmesi ve SPSS İle Veri Analizi. Ankara: Nobel Basımevi.

  • Türk Dil Kurumu (2017). Türkçe sözlük. Türk Dil Kurumu Yayınları, Ankara.

  • We are social (2018). Erişim linki https://wearesocial.com/special-reports/digital-in-2017-global-overview

  • Woon, I., Tai, G. W. & Low, R. A. (2005). Protection Motivation Theory approach to home wireless security. In Proceeding of 26th international conference on information systems. Accessed 02.12.10.

  • Yavanoğlu, U., Sağıroğlu, Ş., & Çolak, İ. (2012). Sosyal ağlarda bilgi güvenliği tehditleri ve alınması gereken önlemler. Politeknik Dergisi, 15(1).

  • Youn, S. (2009). Determinants of online privacy concern and its influence on privacy protection behaviors among young adolescents. Journal of Consumer Affairs, 43(3), 389–418.

  • Young, A. L., & Quan-Haase, A. (2013). Privacy protection strategies on Facebook: The Internet privacy paradox revisited. Information, Communication & Society, 16(4), 479-500.

  • Zhang, L., & McDowell, W. C. (2009). Am I really at risk? Determinants of online users’ intentions to use strong passwords. Journal of Internet Commerce, 8, 180–197.

                                                                                                                                                                                                        
  • Article Statistics