Secondary School Students’ Self-Assessment of Design Process: A study on Scale Development and Prediction by Various Variables

Author :  

Year-Number: 2019-Volume 11, Issue 4
Language : null
Konu :
Number of pages: 296-310
Mendeley EndNote Alıntı Yap

Abstract

Çalışmada ortaokul öğrencilerine yönelik tasarım sürecini özdeğerlendirme ölçeği geliştirilmiştir. Ayrıca, tasarım sürecinde önemli olduğu düşünülen problem çözme becerilerine yönelik algı ve karar verme tutumları arasındaki ilişkiler incelenmiştir. İlişkisel tarama modelindeki bu çalışmada amaçlı örnekleme yöntemi tercih edilmiştir. Araştırma 2018-2019 eğitim-öğretim yılının güz ve bahar döneminde iki aşamada gerçekleştirilmiştir. Birinci aşamada ölçek geliştirilmiş ve ikinci aşamada da geliştirilen ölçek ile diğer değişkenler arasındaki ilişkilere bakılmıştır. Çalışmanın ilk aşamaya 7. Ve 8. Sınıflarda öğrenim gören 530 öğrenci, ikinci aşamaya ise 447 öğrenci katılmıştır. Bu çalışmada Tasarım Sürecini Özdeğerlendirme Ölçeği’nden, Problem Çözme Becerilerine Yönelik Algı Ölçeğinden ve Ergenlerde Karar Verme Ölçeğinden yararlanılmıştır. Verilerin analizinde Betimsel istatistikler, Açımlayıcı ve Doğrulayıcı Faktör Analizi, Pearson Korelasyon Katsayısı, Çoklu Regresyon analizleri kullanılmıştır. Araştırma sonucunda tasarım sürecini özdeğerlendirmeye yönelik kullanılabilecek geçerli ve güvenilir bir ölçme aracı geliştirilmiştir. Bununla birlikte, problem çözmeye yönelik algının ve ihtiyatlı-seçicilik karar verme stilinin tasarım sürecini özdeğerlendirmede önemli katkısı olduğu sonucuna ulaşılmıştır.

Keywords

Abstract

In the study, self-assessment scale of design process was developed for secondary school students. In addition, the relationship between perception for problem solving skills and decision-making attitudes, which are considered important in the design process, were examined. This study was based on the relational screening model and purposive sampling method was preferred. The research was carried out in two stages, in the fall and spring term of the 2018-2019 academic year. In the first stage, the scale was developed and in the second stage, the relationship between the scale and other variables was examined. The first stage of the study was conducted with 530 students from 7th and 8th grades, whereas 447 students participated in the second stage. In this study, Self-Assessment Scale of Design Process, Perception Scale for Problem Solving Skills and Decision-Making Scale in Adolescents were used. Descriptive statistics, Exploratory and Confirmatory Factor Analysis, Pearson Correlation Coefficient, and Multiple Regression analyzes were used in data analysis. As a result of the research, a valid and reliable measurement tool that can be used for self- assessment of design process has been developed. Moreover, it was concluded that problem solving perception and cautious-selective decision-making style have significant contribution on the self-assessment of the design process.

Keywords


  • Akgündüz, D. & Ertepınar, H. (2015). A report on STEM education in Turkey: A provisional agenda or a necessity?. İstanbul, Turkey: İstanbul Aydın Üniversitesi.

  • Alpar, R. (2013). Uygulamalı çok değişkenli istatistiksel yöntemler. Ankara: Detay Yayıncılık.

  • Barger, M., Gilbert, R., Poth, R., & Little, R., (2005). Adapting the engineering design process for elementary education applications. Proceedings of American society for Engineering Education Annual Conference, Oregon, USA, 1. Retrieved from https://peer. asee. org/15533

  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? discussion about STEM about conceptions of STEM in education and patnerships. School Science and Mathematics, 112, 3-11.

  • Büyüköztürk, Ş. (2018). Sosyal bilimler için veri analizi el kitabı istatistik, araştırma deseni SPSS uygulamaları ve yorum. Ankara: Pegem Akademi.

  • Büyüköztürk, Ş., Çokluk, Ö., & Köklü, N. (2017). Sosyal bilimler için istatistik. Ankara: Pegem Akademi.

  • Bybee, R. W. (2010). What is STEM education. Science, 329(5995), 966. doi. 0.1126/science.1194998

  • Corlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Eğitim ve Bilim, 39(171), 74-85.

  • Cunningham, C. M. (2009). Engineering is elementary. The Bridge, 30(3), 11-17.

  • Çepni, S. (2018). Kuramdan uygulamaya STEM eğitimi (2. Baskı). Ankara: Pegem Akademi.

  • Çokluk, Ö., Şekercioğlu, G., & Büyüköztürk, Ş. (2018). Sosyal bilimler için çok değişkenli istatistik: SPSS ve LISREL uygulamaları (Vol. 2). Ankara: Pegem Akademi.

  • Çolakkadıoğlu, O. & Güçray, S. S. (2007). Ergenlerde karar verme ölçeğini Türkçeye uyarlama çalışması. Eğitim Araştırmaları Dergisi, 7(26), 61-71.

  • Daugherty, J. (2012). Infusing engineering concepts: Teaching engineering design. National Center for Engineering and Technology Education. Retrieved from NCTE website: https://digitalcommon s.usu. edu/ncete_publications/170

  • Denson, C. (2011). Building a framework for engineering design experiences in STEM: A synthesis. National Center for Engineering and Technology Education, 169, 1-6.

  • DeVellis, R. F. (2016). Scale development: Theory and applications (Vol. 26). Newbury Park, CA: Sage Publications.

  • Doppelt, Y., Mehalik, M. M., Schunn, C. D., Silk, E., & Krysinski, D. (2008). Engagement and achievements: A case study of design-based learning in a science context. Journal of Technology Education, 19(2), 22-39.

  • Ekici, D. İ. & Balım, A. G. (2013). Ortaokul öğrencileri için problem çözme becerilerine yönelik algı ölçeği: Geçerlilik ve güvenirlik çalışması. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 10(1), 67-86.

  • Ellis, A. & Fouts, J. (2001). Interdisciplinary curriculum: The research base: The decision to approach music curriculum from an interdisciplinary perspective should include a consideration of all the possible benefits and drawbacks. Music Educators Journal, 87(22), 22-26.

  • Ercan, S. & Sahin, F. (2015). The usage of engineering practices in science education: Effects of design based science learning on students' academic achievement. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 9(1), 128-164.

  • Field, A. (2009). Discovering statistics with SPSS (3nd ed.). London: Sage.

  • Fortus, D., Dershimer, R. C., Krajcik, J. S., Marx, R. W., & Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.

  • Fortus, D., Krajcik, J., Dershimer, R. C., Marx, R. W., & Mamlok-Naaman, R. (2005). Design-based science and real-world problem-solving. International Journal of Science Education, 27(7), 855-879.

  • George, D. & Mallery, P. (2001). SPSS for Windows step by step: A simple guide and reference 10.0 update (3rd ed.). Boston, MA: Allyn & Bacon.

  • Güriş, S. & Astar, M. (2015). SPSS ile İstatistik. İstanbul: Der Yayınları.

  • Herdem, K. & Ünal, İ. (2018). STEM eğitimi üzerine yapılan çalışmaların analizi: Bir meta-sentez çalışması. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 48(48), 145-163.

  • ITEA (2007). Standards for technological literacy. Content for the study of technology. Reston, VA: International Technology Education Association. Retrived from ITEEA website: https://www.iteea.org/42511.aspx

  • Jonassen, D. H. (2011). Design problems for secondary students. National Center for Engineering and Technology Education. Retrieved from http://ncete.org/flash/pdfs/Design_Problems_ Jonassen.pdf

  • Kalaycı, Ş. (2016). SPSS uygulamalı çok değişkenli istatistik teknikleri. Ankara: Asil Yayınevi.

  • Karasar, N. (2016). Bilimsel araştırma yöntemleri: Kavramlar teknikler ilkeler. Ankara: Nobel Akademik Yayıncılık.

  • Kline, R. B. (2015). Principles and practice of structural equation modeling. New York: The Guilford Press.

  • Kolodner, J. L., Camp, P., Crismond, D., Fasse, B., Gray, J., Holbrook, J. et al. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design into practice. Journal of the Learning Sciences, 12(4), 495-547.

  • Lederman, N. G. & Niess, M. L. (1997). Integrated, interdisciplinary, or thematic instruction? Is this a question or is it quastionable semantics?. School Science and Mathematics, 97(2), 57-58.

  • Leonard, M. J. (2004). Toward epistemologically authentic engineering design activities in the science classroom. National Association for Research in Science Teaching, Vancouver, B.C.

  • Mann, L., Harmoni, R., & Power, C. (1989). Adolescent decision-making: The development of competence. Journal of Adolescence, 12(3), 265-278.

  • Mehalik, M. M., Doppelt, Y., & Schuun, C. D. (2008). Middle‐school science through design‐based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71-85.

  • Mentzer, N. (2011). High school engineering and technology education integration through design challenges. Journal of STEM Teacher Education, 48(2), 103-136.

  • Ministry of National Education [MEB]. (2018a). Fen Bilimleri Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). [Science Education Curriculum (Primary, Secondary, 3, 4, 5, 6, 7 and 8 Classes)]. Ankara: Milli Eğitim Bakanlığı Yayınları.

  • Ministry of National Education [MEB]. (2018b). Teknoloji ve Tasarım Dersi Öğretim Programı Ortaokul 7 ve 8. Sınıflar [Technology and Design Course Curriculum (Secondary School 7 and 8 Classes)]. Ankara: Milli Eğitim Bakanlığı Yayınları.

  • Ministry of National Education [MEB]. (2018c). Bilim Uygulamaları Dersi Öğretim Programı. (Ortaokul ve İmam Hatip Ortaokulu 5, 6, 7 ve 8. Sınıflar) [Science Applications Course Curriculum. (Secondary School and İmam Hatip Secondary School 5, 6, 7 and 8 Grades)]. Ankara: Milli Eğitim Bakanlığı Yayınları.

  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., & Roehrig, G. H. (2014-in press). Implementation and integration of engineering in K-12 STEM education. In J. Strobel, S. Purzer, & M. Cardella (Edt.), Engineering in precollege settings: Research into practice. Rotterdam, the Netherlands: Sense Publishers.

  • National Academies [NAEP] (2014). Technology and engineering literacy framework for the 2014 national assessment of educational progress-pre-publication edition. WestEd: National Assessment Governing Board.

  • National Academy of Engineering [NAE] & National Research Council [NRC]. (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.

  • National Research Council [NRC]. (2012). A Framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.

  • Özdamar, K. (2013). Paket programlar ile istatistiksel veri analizi 2 (Vol. 2). Eskişehir: Kaan Kitabevi.

  • Pratt, H. (2012). The NSTA reader's guide to a framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Science Teachers Association [NSTA].

  • Purzer, Ş. & Chen, J. (2010). Teaching decision-making in engineering: A review of textbooks and teaching approaches. Proceedings of the American Society for Engineering Education Conference, Louisville, KY.

  • Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K‐12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31-44.

  • Roth, W. (2001). Learning Science through technological design. Journal of Research in Science Teaching, 38(7), 768-790.

  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.

  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23-74.

  • Smith, K. A. (1988). The nature and development of engineering expertise. European Journal of Engineering Education, 13(3), 317-330.

  • Strong, M. G. (2013). Developing Elementary Math and Science Process Skills Through Engineering Design Instruction. Hofstra University.

  • Tabachnick, B. G. & Fidell, L. S. (2007). Multivariate statistics (5th ed.). Boston: Allyn and Bacon.

  • Tal, T., Krajcik, J. S., & Blumenfeld, P. C. (2006). Urban schools' teachers enacting project‐based science. Journal of Research in Science Teaching, 43(7), 722-745.

  • Wang, H. (2012). A new era of science education: Science teachers‘ perceptions and classroom practices of science, technology, engineering, and mathematics (STEM) ıntegration (Unpublished doctoral dissertatio). University of Minnesota, USA.

  • Wells, J. G. (2016). PIRPOSAL model of ıntegrative STEM education: Conceptual and Pedagogical framework for classroom ımplementation. Technology and Engineering Teacher, 75(6), 12-19.

  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Unpublished Qualifying Paper, Tufts University, USA.

                                                                                                                                                                                                        
  • Article Statistics